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Uniform Approximation of Vector-Valued Functions 
with a Constraint 

By Geneva G. Belford 

Abstract. This paper deals with existence and characterization of best approximations 
to vector-valued functions. The approximations are themselves vector-valued functions 
with components taken from a linear space, but the constraint is imposed that certain of the 
approximation parameters should be identical for all components. 

1. Introduction. The following situation often occurs in the analysis of ex- 
perimental data. A set of experimental curves, all of which should roughly fit the 
same theoretical formula, has been obtained, and one desires to determine certain 
parameters in the theoretical formula. The experimental conditions have been such 
that, although some of the parameters should be the same for all of the given curves, 
others vary with the particular experiment. One would like, therefore, to be able 
to find the set of theoretical curves which simultaneously best approximates the set 
of given curves, under the constraint that some of the theoretical parameters should 
take on the same value for all members of the approximating set. As a simple example, 
one might want to fit a set of experimental curves by a set of straight lines, all with 
the same slope but with varying axis-intercepts. 

In the next section, we give a precise formulation of this problem for approximation 
from linear families. Following this, we provide existence and characterization theo- 
rems and discuss some examples. 

2. Formulation of the Problem. Let g1, * , g, be a given set of real functions 
continuous on a closed interval I of the real line. For brevity, let g denote the 1- 
dimensional vector-valued function with components {gi}. Let V be an n + m 
dimensional linear subspace of C(I), and suppose that V = V1 D V2, where V1 and 
V2 are n- and rn-dimensional subspaces, respectively. We then define the family of 
approximating vectors 

F=.(p , + + 9 **s + Q1): f C VI, E ' V2, i=12, , . 
The uniform norm N(f) of any vector-valued function f with components fi in C(I) 
is defined by 

N(f) = max 1fhilh, 

where lfI l= max,,, 1fi(x)I. 
Let p(g) = inff F N(g - f). An element f in F is then called a best approximation 

to g from F if 
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N(g - f) = p(g). 

If n = 0, a best approximation f is obtained by constructing each component fi 
as a best approximation from V2 to gi. If m = O,.we are seeking a best approximation 
(p from V1 to the set of functions {gi }. This problem has been discussed in a paper by 
Dunham [1]. The new cases are therefore those for which neither n nor m is zero. 
If one thinks of the subspace V as fixed, it is clear that the various n > 0 cases may 
be thought of as constrained versions of the simple n = 0 situation. 

3. Existence of a Best Approximation. Existence is most easily proved by in- 
troducing a basis into V and considering the coefficient space. Let the functions 
v,. , vn form a basis for V1 and v,,+1, *., Vn+m form a basis for V2. Then the 
ith component f, so + t1 of any element f in F may be written 

n m 
fi aivj + E /iA+i- 

i=l j=1 

Thus, any f is characterized by its associated coefficient vector 

a = (al, * * * , n , a i ll3 s * * 1m) 021 i * * *, m) 

We can consider a as a vector in Rd, the space of real-valued vectors of dimension 
d = n + ml. We then refer to Rd as the "coefficient space." To emphasize the de- 
pendence of f on a, we may write f _ f(a, x). Note that the dependence of f(a, x) 
on a is linear; hence, a standard argument suffices to show that a best approximation 
from V always exists. 

The convexity of the set of best approximations may be proved by the usual 
argument. With respect to the question of uniqueness, it is almost intuitively clear 
that (if neither V1 nor V2 is empty) a best approximation will be unique only in rare 
cases, even when V is assumed to be a Haar subspace. This point will be discussed 
later, when some examples are considered. We first give some characterization results. 

4. Characterization of a Best Approximation. The key to characterizing best 
approximations lies in properly defining "extremals" of the error. Since I error 
functions must be simultaneously considered, we use a definition of extremal analogous 
to that used by Moursund [5] in studying simultaneous approximation of a function 
and its derivatives. A generalized version of- this definition has also been used by 
Johnson [2], [3] to study approximation of vector-valued functions. 

Definition. The pair (x, k), where x E I and k is an integer, is called an extremal 
of the approximation f to g if 

Ifk(x) - gk(x) = N(f - g). 

The following theorems then follow the same scheme as the discussion of linear 
Chebyshev theory in the book by Meinardus [4, p. 13 ff.]. 

THEOREM 1. Let f(a, x) be a fixed element in F and suppose that subsets Dk C I 
(k = 1, ... , 1) have the property that g1(x) - fk(a, x) $ 0 for all x in D*. If there 
exists no f(b, x) C F slich that, for all k, 

(1) [gk(x) - fk(a, x)]fk(b, x) > 0 

for all x G D,, then 
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(2) p(g) _ inf inf Igk(X) - fk(a, x)I 
k xCDk 

Proof. If 6 = 0, the result is trivial; so take 6 > 0. The proof is by contradiction; 
assume that p(g) < 3. Then, for some f(c, x) in F, 

N(g - f(c, )) < 6 or max max gk(x) - f(c, x)l < 6, 
Ak x rI 

But then it follows that, for all k and all x C Dk, 

(3) lgk(x) fk(C, x)I < lgk(x) - fk(a, x)|. 

Now, let f(b, x) = f(c, x) - f(a, x). It may then be readily proved from (3) that, for 
any k and any x C Dk, [gk(x)- fk(a, x)]f,(b, x) > 0, which contradicts the hypoth- 
esis and so proves the theorem. 

Any of the sets Dk (but not all of them) may be taken to be empty. For any such 
k, (1) is assumed satisfied (for any b) and the quantity infxeDk |gk(X) - f,(a, x)l is 
taken to be + o (so that this k does not enter into the computation of 6). 

Theorem I provides a way of obtaining a lower bound on p(g). In addition, by 
choosing particular sets Dk, we obtain a sufficient condition for a best approximation. 
To be precise, let Ek(a) = { x: (x, k) is an extremal of the approximation f(a, x) to g}. 
Then, the following corollary holds. 

COROLLARY 1. If there exists no f(b, x) C F such that for all k the inequality 
[gk(x) - f k(a, X)]fk(b, x) > 0 is satisfied for all x C Ek(a), then f(a, x) is a best ap- 
proximation to g. 

The proof is immediate, since the sets Ek(a) satisfy the conditions on the Dk of 
Theorem 1, and (2) then becomes p(g) _ N(g - f(a, )). A converse of this corollary 
is also obtainable, as follows. 

THEOREM 2. If there exists an f(b, x) C F such that, for each extremal (x, k) of the 
approximation f(a, x) to g(x), [gk(X) - f k(a, x)]fk(b, x) > 0, then there exists an 
f(c, x) C F that is a better approximation to g(x) than f(a, x) is. 

Proof. Let sets Ek(a) be defined as before. Then, for each k such that Ek(a) is 
nonempty, let 

min {[gk(x) - fk(a, x)]fk(b, x)} ak > 0, 
xeEk (a) 

and let a = min { ak}. (Values of k for which Ek(a) is empty are ignored in deter- 
mining this minimum.) 

Now, for each k for which Ek(a) is nonempty, choose open subsets Uk C I such 
that Ek(a) C Uk and 

fk(b, x)[gk(x) -f(a, x)] > a/2 

for all x in Uk. (If Ek(a) = 0, let Uk = 0.) Furthermore, for each k let 

Ck, N(g - f(a, ))-max Iggk(X) - f(a, x)I > 0, 
I-Uk 

and let y = min {ckl} 
We shall show that there exists a better approximation of the form 

f(c, x) = f(a, x) + ef(b, x), 
where e is some real, positive scalar. First, note that 
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(4) [gk(x) fk(C, x)]2 = [gk(x) - fk(a, x)]2 

- 2e[gj(x) - fk(a, x)]fAk(b, x) + e [fk(b, x)]2. 

Letting N(f(b,*)) - ,B, we see that (4) implies that, for all k and all x & Uk, 

[gk(x) fk(C, x)] ? [gk(x) - fk(a, X)]2 + 3- 2ea/2. 

On the other hand, for all k and x E I - Uk, 

(6) |gk 
- fk(C, x) lgk(x) 

- 
fk(a, x)| + e Ifk(b, x)I 

? N(g- f(a, ))- + e13. 

By choosing 

e < min{y/23, a/2321 , 

we therefore obtain an f(c, x) for which (from (6) and (5)) 

lgk(x) - k(C, x)| < N(g - f(a, )) 

for all k and all x g I. Thus, 

N(g - J(c, )) < N(g - f(a, 

and the theorem is proved. 
Combining Corollary 1 with Theorem 2, we immediately obtain a characterization 

theorem analogous to the well-known Kolmogorov Criterion. 
THEOREM 3. A necessary and sufficient condition for f(a, x) to be a best approxima- 

tion to g(x) from F is that there exist no f(b, x) e F such that 

(7) [gk(x) - fk(a, X)]fk(b, x) > 0 

for every extremal (x, k) of the approximation f(a, x) to g(x). 
The theorems of this section provide the basis for a standard type of algorithm 

for the construction of best approximations. Specifically, (7) is a system of linear 
inequalities which may be solved for a vector b if f(a, x) is not a best approximation. 
The proof of Theorem 2 then gives a method of constructing a better approximation 
than f(a, x). (In practice, one would probably optimize the parameter E [4, p. 128].) 
The process is then repeated if necessary. Fdr more details, the reader is referred to 
discussions of the virtually identical method for the single-function case. (For 
example, see [4, p. 128].) 

5. Examples and Discussion. 
Example 1. Suppose that on I = [0, 1] the pair of functions g1 = X2, g2 = 2X2 

are to be approximated by straight lines with identical intercepts (i.e., V = P1, the 
set of polynomials of degree one or less, and V1 = P0). A best approximation from F 
is provided by the function pair f1 = - + x; f2 = - + 2x. To verify this, note 
that N(g - f) = 4 and extremals (x, k) are {(0, 1), (1, 1), (0, 2), (2, 2), (1, 2)} with 
associated error signs { +, +, +,-, + }, respectively. The condition of Theorem 3 
is clearly satisfied-in fact 12 is the best unconstrained approximation from P1 to g2- 

The above example serves to illustrate the fact that even in simple cases of poly- 
nomial approximation the best approximation may not be unique. The situation 
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here is that, although f1 is uniquely determined, f1 is not; for example, f' = - L + 
9x/8 also gives I1f, - g11 =4 

This example also suggests that it may be generally true that for some k, f,k should 
be a best unconstrained approximation to g, from V. That this is not the case is 
shown by the following example. 

Example 2. Suppose that the functions to be approximated are g, = x2 and 
g2 = x3, I = [-1, 1], V = P1 and V1 = PO. The best unconstrained approximations 
from P1 to g1 and g2 are 2 and 3x/4, respectively, and the error norms are I and i. 

The best approximation from F, however, has components f1 = 8, 12 8 + 3x/4, 
with N(g - f) = 8. The extremals arq {(- 1, 1), (1, 1), (-1, 2), (2, 2)} with associated 
error signs { +, +, -, - I. To verify that this approximation is best, one must show 
that there exists no f(b, x) = (a + ,3lx, a + f32x) such that 

C-j31 > O, a? + 1 > 0, 

a 02 < 0, a?+3/2 < 0. 

This set of inequalities is readily seen to be inconsistent; thus no such f(b, x) exists. 
It is also not difficult to convince oneself from elementary considerations that in this 
example the best approximation is unique. 

As is generally the case for constrained or nonlinear approximation problems, 
whether or not the best approximation is unique will depend upon the particular 
function being approximated. This is readily seen by making a change in the g of 
Example 2. 

Example 3. In Example 2, let g1 = x, but leave everything else the same. The 
set F of best approximations from F is now 

F- i'f = (ox, 3IV4): 3/'4 ?< 3 < 5/41 

In view of this nonuniqueness, it is important to look more closely at the prop- 
erties of the set of best approximations and the associated extremals. In this con- 
nection, one may obtain the following result. 

THEOREM 4. Let f(a, x) and f(b, x) both be best approximations from F to g. Let 

f(c, x) = Xf(a, x) + (1 - X)J(b, x) (O < X < I). 

Then, if (xc, k) is an extremal of the approximation f(c, x) to g, it is also an extremal 
of the approximations f(a, x) and f(b, x) to g. Furthermore, f k(a, x) = f k(b, x) = f k(C, x). 

Proof. By the convexity of the set of best approximations, f(c, x) is also best. Then, 

p(g) =I f(c, x) - gk(x)fl 

X- X(fk(a, X) - gk(x)) + (1 - )(fk(b, x) - gk(x))j 

If the conclusions of the theorem were not true, the right side of this equality would 
be strictly less than p(g). Hence, the theorem is proved by contradiction. 

COROLLARY. Suppose the best approximation from F to g is not unique and let 
f(c, x) be any point in the interior of the set F of best approximations. Then, for every 
f(b, x) E F, if (x, k) is an extremal of the approximation f(c, x) to g, it is also an ex- 
tremal of the approximation f(b, x) to g. Furthermore, fk(c, x) = fk(b, x). 

The proof is immediate. Simply consider the line segment from f(b, x) through 
f(c, x) to some third point f(a, x) in F, and then apply Theorem 4. 
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One sees from this corollary that all interior points of F have identical sets of 
extremals. Furthermore, maximal sets of extremals must be associated with boundary 
points of P. Example 3 illustrates these remarks. In that case, F is one-dimensional, 
with boundary points for 3 = 4 and 4. For any interior point of P, the set of ex- 
tremals is 

{(-1, 2), (1, 2), (1/2, 2), (-1/2, 2)}. 

At the boundary points, this set is augmented by the additional extremals 

{ (-I, 1), (1, 1)}. 

Of course, one would not in general expect the extremals to be identical for all 
boundary points. Looking again at Example 1, we see that there 

F= {f = (-1/4 + O3x, -1/4 + 2x): 1 < ,B ? /2}. 

For the boundary point at ,B = 1, we found the set of extremals 

{(0, 1), (1, 1), (0, 2), (1/2, 2), (1, 2)}, 

while at \ - /2 the set of extremals is 

{(O, 1), (1/N/2, 1), (0, 2), (1/2, 2), (1, 2)}. 

The fact that neither of these sets contains the other is sufficient to show that, if 
they are extremal sets for best approximations, the corresponding best approxima- 
tions lie on the boundary of P. In this example, the extremal set for any interior 
point of P is just the intersection of the extremal sets for the boundary points, al- 
though, in view of Example 3, such a result will not hold in general. 
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